If cos A = 3/4,then the value of 16 cos²(A/2) −32sin(A/2)sin(5A/2) is

The question with the options

Q: $If\ \cos \ A\ =\ \frac{3}{4},\ then\ the\ value\ of\ 16\cos ^2\left(\frac{A}{2}\right)-32\sin \left(\frac{A}{2}\right)\ \sin \left(\frac{5A}{2}\right)\ is$

$\left(a\right)\ -4\ \ \left(b\right)\ -3\ \ \left(c\right)\ 3\ \ \left(d\right)\ \ $

Answer: 3, Option C

Solution:

$Given,\ \cos \ A\ =\ \frac{3}{4}$

$and\ 16\cos ^2\left(\frac{A}{2}\right)-32\sin \left(\frac{A}{2}\right)\ \sin \left(\frac{5A}{2}\right)$

$Formula\ used:\ \cos 2A=2\cos ^2A−1$

$Formula\ used:\ \cos 3A=4\cos ^3A−3\cos A$

$\cos A=\ 2\cos ^2\left(\frac{A}{2}\right)-1$

$2\ \cos ^2\left(\frac{A}{2}\right)\ =\ \cos A+1$

$=\ \frac{3}{4}+1$

$=\frac{7}{4}$

$\cos ^2\left(\frac{A}{2}\right)=\frac{7}{8}$

$and\ 16\cos ^2\left(\frac{A}{2}\right)-32\sin \left(\frac{A}{2}\right)\ \sin \left(\frac{5A}{2}\right)$

$16\cdot \frac{7}{8}-16\left(2\ \sin \frac{A}{2}.\sin \frac{5A}{2}\right)$

$14-16\left(2\cos 2A-\cos 3A\right)$

$14-16\left[\left(2\cos ^2A-1\right)-\left(4\cos ^3A-3\cos A\right)\right]$

$14-16\left[\left(2\cdot \frac{9}{16}-1\right)-4\left(-\frac{9}{16}\right)\right]$

$14-2-9$

$=3$

Related Question:  If tanA-tanB=x and cotB-cotA=y, then cot(A-B) is equal to

Leave a Comment